$$\int{\sqrt{1-{x^3}}}dx$$
I tried with $t=x^3$ but then I have the $3x^2$ dt that I can't get rid of.
$$\int{\sqrt{1-{x^3}}}dx$$
I tried with $t=x^3$ but then I have the $3x^2$ dt that I can't get rid of.
For any real number of $x$ ,
When $|x|\leq1$ ,
$\int\sqrt{1-x^3}~dx$
$=\int\sum\limits_{n=0}^\infty\dfrac{(2n)!x^{3n}}{4^n(n!)^2(1-2n)}dx$
$=\sum\limits_{n=0}^\infty\dfrac{(2n)!x^{3n+1}}{4^n(n!)^2(1-2n)(3n+1)}+C$
When $|x|\geq1$ ,
$\int\sqrt{1-x^3}~dx$
$=i\int\sqrt{x^3-1}~dx$
$=i\int x^\frac{3}{2}\sqrt{1-\dfrac{1}{x^3}}~dx$
$=i\int x^\frac{3}{2}\sum\limits_{n=0}^\infty\dfrac{(2n)!}{4^n(n!)^2(1-2n)x^{3n}}dx$
$=\int\sum\limits_{n=0}^\infty\dfrac{i(2n)!x^{\frac{3}{2}-3n}}{4^n(n!)^2(1-2n)}dx$
$=\sum\limits_{n=0}^\infty\dfrac{i(2n)!x^{\frac{5}{2}-3n}}{4^n(n!)^2(1-2n)\left(\dfrac{5}{2}-3n\right)}+C$
$=\sum\limits_{n=0}^\infty\dfrac{i(2n)!}{2^{2n-1}(n!)^2(2n-1)(6n-5)x^{3n-\frac{5}{2}}}+C$