Question asks to prove:
${^{n}\mathrm{C}_{k}} = {^{n-1}\mathrm{C}_{k-1}}+{^{n-1}\mathrm{C}_{k}}$
My Steps:
$$\begin{align*}\frac{(n-1)!}{(n-k-2)!(k-1)!} + \frac{(n-1)!}{(n-k-1)!(k)!} & = \frac{(n-1)!}{(n-k-2)!(k-1)!} + \frac{(n-1)!}{(n-1-k)(n-k-2)!k!}\end{align*}$$
$$\begin{align*}=\frac{(n-1)!}{(n-k-2)!(k-1)!} + \frac{(n-1)!}{(n-1-k)(n-k-2)!k(k-1)!}\end{align*}$$
$$\begin{align*}=\frac{[k(n-1-k)(n-1)!] + (n -1)!}{(n-1-k)(n-k-2)!k(k-1)!}\end{align*}$$
Now I have no clue on how to continue from here. Help please. Thanks!