-2

$$\lim_{x\to\infty} x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right) =\ ? $$

1 Answers1

0

Take $t=1/x$, then the limit becomes $$\lim_{t\to 0^+} \frac{1}{t^2}\left(\sqrt{1+2t}-2\sqrt{1+t}+1\right).$$ Then use $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^2}{8}+o(x^2)$. $$\lim_{t\to 0^+} \frac{1}{t^2}\left(\left(1+\frac{(2t)}{2}-\frac{(2t)^2}{8}+o(t^2)\right)-2\left(1+\frac{t}{2}-\frac{t^2}{8}+o(t^2)\right)+1\right)=-\frac{1}{4}.$$

Robert Z
  • 145,942