$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\color{#f00}{\sum_{x_{1}\ =\ 0}^{\nu}\cdots\sum_{x_{n}\ =\ 0}^{\nu}\,\,
\delta_{\ds{x_{1} + \cdots + x_{n},r}}} =
\sum_{x_{1}\ =\ 0}^{\nu}\cdots\sum_{x_{n}\ =\ 0}^{\nu}
\,\,\oint_{\verts{z}\ =\ 1^{-}}\,\,\,
{1 \over z^{r\ +\ 1\ -\ x_{1}\ -\ \cdots\ -\ x_{n}}}
\,\,\,\,\,{\dd z \over 2\pi\ic}
\\[4mm] = &\
\oint_{\verts{z} = 1^{-}}\,\,{1 \over z^{r + 1}}\,\,\,
\pars{\sum_{x\ =\ 0}^{\nu}z^{x}}^{n}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z} = 1^{-}}\,\,{1 \over z^{r + 1}}\,\,\,
\pars{z^{\nu + 1} - 1 \over z - 1}^{n}\,{\dd z \over 2\pi\ic}
\\[4mm] = &\
\oint_{\verts{z} = 1^{-}}\,\,\,{1 \over z^{r + 1}}\,\,\,
\sum_{\ell = 0}^{n}{n \choose \ell}\pars{-x^{\nu + 1}}^{\ell}
\sum_{\ell' = n}^{\infty}{n \choose \ell'}\pars{-z}^{\ell'}\,{\dd z \over 2\pi\ic}
\\[4mm] = &\
\sum_{\ell = 0}^{n}{n \choose \ell}\pars{-1}^{\ell}
\sum_{\ell' = 0}^{\infty}{n \choose \ell'}\pars{-1}^{\ell'}
\oint_{\verts{z} = 1^{-}}\,\,\,
{1 \over z^{r - \nu\ell -\ell -\ell '+ 1}}\,\,\,
\,{\dd z \over 2\pi\ic}
\\[4mm] = &\
\sum_{\ell = 0}^{n}{n \choose \ell}\pars{-1}^{\ell}\,\,\sum_{\ell' = 0}^{\infty}
\pars{-1}^{\ell'}{n \choose \ell'}\delta_{r - \nu\ell - \ell - \ell' + 1,1}
\\[4mm] = &\
\left.\sum_{\ell = 0}^{n}{n \choose \ell}\pars{-1}^{\ell}
\pars{-1}^{r - \nu\ell -\ell}\,\,{n \choose r - \nu\ell - \ell}
\,\right\vert_{\ r\ -\ \nu\ell\ -\ \ell\ \geq\ 0}
\\[4mm] = &\
\color{#f00}{\pars{-1}^{r}\sum_{\ell = 0}^{m}\pars{-1}^{\nu\ell}\,\,
{n \choose \ell}{n \choose r - \nu\ell - \ell}}\quad
\mbox{where}\quad \color{#f00}{m} \equiv
\color{#f00}{\min\braces{n,\left\lfloor{r \over \nu + 1}\right\rfloor}}
\end{align}