The way I am planning to arrange this is by providing fragments of the proof, so I can understand what's going on before forging ahead, so if you are going to help me, keep in mind that I am going to be updating the thread with the missing fragments. I appreciate so much your help!.
Theorem 7-1. A general primitive solution of $x^2+y^2=z^2$, $y$ even, $x>0,y>0,z>0$,
is given by $$x=a^2-b^2,y=2ab,z=a^2+b^2$$
where $a$ and $b$ are prime to each other and not both odd, and $a>b>0$.
The above theorem and the proof below are from LeVeque's Elementary Theory of Numbers.
Proof: It is easily verified that for every such pair of integers a and b, the corresponding integers $x,y,z$ satisfy all the requirements. It remains to show that every solution arises from suitably chosen a and b satisfying the conditions of the theorem. (It's not clear to me what we are trying to prove and besides that, how do you verify for every such pair of integers a and b, the corresponding integers $x,y,z$ satisfy all the requirements).
Suppose that $x^2+y^2=z^2$. Since $(x,y,z)=1$, we also have $(y,z)=1$, so that $(z-y,z+y)=1$ or $2$. But z is odd and y is even and therefore $(z-y,z+y)=1$. (why is $(y,z)=1$?) I need a deeper explanation of the latter).
$$x^2=(z-y)(z+y)$$
We deduce that $z-y$ and $z+y$ must be odd squares (How?, an odd square is a number in the form $x^2$ that is odd right?), since they are positive. Now if $t$ and $u$ are integers of the same parity (both even or both odd), there are integers $a$ and $b$ such that $t=a+b$ and $u=a-b$ (why are we doing this?), namely $a=(t+u)/2$ and $b=(t-u)/2$ (ok here we just solve for b and a). Applying this in the case where $t$ and $u$ are the odd numbers of which $z+y$ and $z-y$ are the squares, respectively, we can set
$$z-y=(a-b)^2\\ z+y=(a+b)^2$$
(How is the latter true?)