Your system is described by the augmented matrix
$$
A=
\left[\begin{array}{rrrr|r}
0 & 1 & 1 & 0 & r_{1} \\
0 & 1 & 0 & 1 & c_{1} \\
1 & 1 & 0 & 0 & d_{1} \\
0 & 0 & 1 & 1 & d_{2} \\
1 & 0 & 1 & 0 & c_{2} \\
1 & 0 & 0 & 1 & r_{2}
\end{array}\right]
$$
Row-reducing the system gives
$$
\DeclareMathOperator{rref}{rref}\rref A=
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & -\frac{1}{2} \, c_{1} + d_{1} + \frac{1}{2} \, d_{2} - \frac{1}{2} \, r_{1} \\
0 & 1 & 0 & 0 & \frac{1}{2} \, c_{1} - \frac{1}{2} \, d_{2} + \frac{1}{2} \, r_{1} \\
0 & 0 & 1 & 0 & -\frac{1}{2} \, c_{1} + \frac{1}{2} \, d_{2} + \frac{1}{2} \, r_{1} \\
0 & 0 & 0 & 1 & \frac{1}{2} \, c_{1} + \frac{1}{2} \, d_{2} - \frac{1}{2} \, r_{1} \\
0 & 0 & 0 & 0 & c_{1} + c_{2} - d_{1} - d_{2} \\
0 & 0 & 0 & 0 & -d_{1} - d_{2} + r_{1} + r_{2}
\end{array}\right]
$$
This implies that your system is solvable if and only if
\begin{align*}
c_1+c_2-d_1-d_2 &= 0 \\
-d_1-d_2+r_1+r_2 &= 0
\end{align*}
If these conditions are satisfied, then your system is solved by
\begin{align*}
w &=-\frac{1}{2} \, c_{1} + d_{1} + \frac{1}{2} \, d_{2} - \frac{1}{2} \, r_{1} \\
x &= \frac{1}{2} \, c_{1} - \frac{1}{2} \, d_{2} + \frac{1}{2} \, r_{1}\\
y &= -\frac{1}{2} \, c_{1} + \frac{1}{2} \, d_{2} + \frac{1}{2} \, r_{1}\\
z &=\frac{1}{2} \, c_{1} + \frac{1}{2} \, d_{2} - \frac{1}{2} \, r_{1}
\end{align*}