Prove the convergence of
$$\int\limits_1^{\infty} \frac{\cos(x)}{x} \, \mathrm{d}x$$
First I thought the integral does not converge because
$$\int\limits_1^{\infty} -\frac{1}{x} \,\mathrm{d}x \le \int\limits_1^{\infty} \frac{\cos(x)}{x} \, \mathrm{d}x$$
But in this case
$$\int\limits_1^{\infty} \frac{\cos(x)}{x} \, \mathrm{d}x \le \int\limits_1^{\infty} \frac{1}{x^2} \, \mathrm{d}x$$
it converges concerning the majorant criterion. What's the right way?