The general procedure is as follows for positive $x$. Let $x_0=x$, and let $[a_0;a_1,a_2,\dots]$ be the desired CF expansion. Then $a_0=\lfloor x_0\rfloor$. Given $x_n$ and $a_n$, let $$x_{n+1}=\frac1{x_n-a_n}$$ and $a_{n+1}=\lfloor x_{n+1}\rfloor$.
Since $\frac12(1-\sqrt5)$ is negative, let’s work with its absolute value, $x=\frac12(\sqrt5-1)$. Clearly $0\le x<1$ so $a_0=0$. Then $$x_1=\frac1x=\frac2{\sqrt5-1}=\frac{2(\sqrt5+1)}4=\frac{1+\sqrt5}2\;;$$ so $$\lfloor x_1\rfloor=\left\lfloor\frac{1+\sqrt5}2\right\rfloor=1\;,$$ since $2\le\sqrt5<3$, and $a_1=1$.
Now $$x_2=\frac1{x_1-1}=\frac2{\sqrt5-1}=x_1\;,$$ so everything repeats: $a_2=1$, $x_3=x_1$, $a_3=1$, etc. Thus, $x=[0;1,1,1,\dots]$, and your number is the negative of this.