Your final equation turns into $(2y+1)^2 - 8 x^2 = 1.$ In the output below, we show how to get all $U_n^2 - 8 V_n^2 = 1,$ where we get
$$ U_{n+2} = 6 U_{n+1} - U_n, $$
$$ V_{n+2} = 6 V_{n+1} - V_n. $$
So, let's see, for you, $x_n = V_n.$ Note that $U_n$ is always odd, and
$y_n = \frac{U_n - 1}{2}.$ If you want to include the negative values of $y,$ take $2y+1 = -U$ or $y_n' = \frac{-U_n - 1}{2}.$
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
3 8
1 3
Automorphism backwards:
3 -8
-1 3
3^2 - 8 1^2 = 1
U^2 - 8 V^2 = 1
Wed Jul 13 15:06:18 PDT 2016
U: 3 V: 1 ratio: 3 SEED BACK ONE STEP 1 , 0
U: 17 V: 6 ratio: 2.83333
U: 99 V: 35 ratio: 2.82857
U: 577 V: 204 ratio: 2.82843
U: 3363 V: 1189 ratio: 2.82843
U: 19601 V: 6930 ratio: 2.82843
U: 114243 V: 40391 ratio: 2.82843
U: 665857 V: 235416 ratio: 2.82843
U: 3880899 V: 1372105 ratio: 2.82843
U: 22619537 V: 7997214 ratio: 2.82843
Wed Jul 13 15:06:58 PDT 2016
U^2 - 8 V^2 = 1
jagy@phobeusjunior:~$