How do we prove that
$$4(3\sqrt2-4)=\prod_{n=1}^{\infty}\left({e^{2\pi(2n-1)}-1\over e^{2\pi(2n-1)}+1}\right)^8\tag1$$
Rewrite as, to keep it simple
Let $a=e^{2\pi(2n-1)}$
$$4(3\sqrt2-4)=\prod_{n=1}^{\infty}\left(a-1\over a+1\right)^8\tag2$$
Take the log
$${1\over 8}\ln(12\sqrt2-16)=\sum_{n=1}^{\infty}\ln\left({a-1\over a+1}\right)\tag3$$
We have this series
$$-\ln\left({x-1\over x+1}\right)={2\over x-1}-{2^2\over 2(x-1)^2}+{2^3\over 3(x-1)^3}-\cdots\tag4$$
$$-{1\over 8}\ln(12\sqrt2-16)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}{(-1)^{m-1}2^m\over m(a-1)^m}\tag5$$
How do I evaluate this double series?