4

For all integers $a$ prove that
$$a^7 \equiv a \pmod {42}.$$ There is no use telling you all what and how much I tried because I cannot even understand the problem itself left alone attempting it. It would be great help for me if I would be provided some hint on either solving the problem or understanding it.

But, I see one thing that $42=7\cdot6$ and somehow we can use Fermat theorem but how? I do not know it. All suggestions/advice leading me to the problem would be greatly welcomed.

Shreya
  • 3,035

4 Answers4

8

You need to show that 42 always divides $a^7-a.$ Since $42 = 2\cdot 3 \cdot 7,$ it suffices to show that $2,3,7$ divide $a^7-a.$

  • 2 divides $a^7-a$ because $a^7$ has the same parity as $a.$
  • 3 divides $a^7-a = a(a^6-1) = a(a^3-1)(a^3+1)$ because $a^3 \equiv a \mod 3$ (we just check that by cases).
  • 7 divides $a^7-a$ by Fermat's little theorem.
Ragib Zaman
  • 35,127
  • Isn't it easier to show $3$ by showing $$a^7-a = a(a^6-1)=a(a^2-1)(a^4+a^2+1) = (a^3-a)(a^4+a^2+1)$$ and it follows since $3|a^3-a$. – Thomas Andrews Feb 11 '13 at 21:58
  • @ThomasAndrews You are probably right. Or perhaps even easier since we don't need to factorize, $a^7-a = a^3-a=0 \pmod 3$ by two applications of FLT. – Ragib Zaman Feb 12 '13 at 13:23
3

Since $42 = 2\cdot 3 \cdot 7$, it suffices to prove:

$a^7 \equiv a$ (mod 2)

$a^7 \equiv a$ (mod 3)

$a^7 \equiv a$ (mod 7)

By Fermat's little theorem, $a^2 \equiv a$ (mod 2)

Hence $a^n \equiv a$ (mod 2) for all integer $n \ge 1$. In particular, $a^7 \equiv a$ (mod 2)

By Fermat's little theorem,

$a^3 \equiv a$ (mod 3)

Hence $a^6 \equiv a^2$ (mod 3)

Hence $a^7 \equiv a^3 \equiv a$ (mod 3)

By Fermat's little theorem,

$a^7 \equiv a$ (mod 7)

Makoto Kato
  • 42,602
0

By Fermat's little theorem, $a^{p-1}≡1(mod\ p)$ for $(a,p)=1$ where any integer a, prime p.

So, $a^{A_p(p-1)}≡1(mod\ p)$ for any natural number $A_p$.

$=>a^{A_p(p-1)+1}≡a$ for $(a,p)=1$

If p|a, $p|a(a^{A_p(p-1)}-1)=>p|(a^{A_p(p-1)+1}-a)$

So in either cases, $p|(a^{A_p(p-1)+1}-a)$ for any integer a, prime p.

For $p=2,3,7,\ A_2+1=2A_3+1=6A_6+1$ So, $A_2=2A_3=6A_6$ and $A_3=3A_6$

So, $lcm(2,3,7)|(a^{6d+1}-a)$ for any integer $d,a$,

i.e., $42|(a^{6d+1}-a)$ for any integer $d,a$.

Here in this problem, d=1.

0

Hint $\ $ Applying the following simple generalization of the little Fermat-Euler theorems, since $\rm\:n = 42 = \color{#C00}2\cdot\color{#0A0}3\cdot\color{brown} 7,\:$ is squarefree, it suffices to check $\rm\:\color{#C00}1,\color{#0A0}2,\color{brown}6\:|\:7\!-\!1 = e\!-\!1.$

Theorem $\ $ For natural numbers $\rm\:a,e,n\:$ with $\rm\:e,n>1$

$\qquad\rm n\:|\:a^e-a\:$ for all $\rm\:a\:\iff n\:$ is squarefree, and prime $\rm\:p\:|\:n\:\Rightarrow\: p\!-\!1\:|\:e\!-\!1$

Proof $\ (\Leftarrow)\ \ $ Since a squarefree natural divides another iff all its prime factors do, we need only show $\rm\:p\:|\:a^e\!-\!a\:$ for each prime $\rm\:p\:|\:n,\:$ or, that $\rm\:a \not\equiv 0\:\Rightarrow\: a^{e-1} \equiv 1\pmod p,\:$ which, since $\rm\:p\!-\!1\:|\:e\!-\!1,\:$ follows from $\rm\:a \not\equiv 0\:$ $\Rightarrow$ $\rm\: a^{p-1} \equiv 1 \pmod p,\:$ by little Fermat.
$(\Rightarrow)\ \ $ See this answer

Bill Dubuque
  • 272,048