$$ z = 1 + 2i \ (complex \ number) \\ z^n = a_n + b_ni \ (a_n, b_n \in \mathbb{Z}, n \in \mathbb{N}^*) \\ We \ know \ that: \ b_{n+2} - 2b_{n+1} + 5b_n = 0 \\ a_{n+1}=a_n-2b_n \\ b_{n+1}=b_n+2a_n $$
Prove that $ z^n \notin \mathbb{R} $
What I tried:
We know that $ b_{n+2} - 2b_{n+1} + 5b_n = 0$
If $ z^n \in \mathbb{R} $ it means that $ b_n = 0 $
So, $ b_{n+2} - 2b_{n+1} = 0 $ and I tried to get a contradiction but I can't because I get $ -3b_n = 0 $.
How can I solve this problem? Thank you!