I know that the Hyper-Geometric function is given by
$$_2F_1(a,b,c,x)=\sum_{i=0}^{\infty}h_nx^n=\sum_{i=0}^{\infty}\frac{(a)_n(b)_n}{n!(c)_n}x^n \tag{1}$$
I want to know that under what conditions the Hyper-Geometric function will converge at $x=1$.
Here in wiki, it is said that according to Gauss theorem
$$_2F_1(a,b,c,1)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}, \qquad \Re(c) \gt \Re(a+b)\tag{2}$$
I used the ratio test to get something but the test is inconclusive.
$$\lim_{n \to \infty}\frac{h_{n+1}}{h_n}=\lim_{n \to \infty}\frac{(a+n)(b+n)}{(c+n)(1+n)}=1$$
Questions
$1$- How can I prove the relation $(2)$?
$2$- What happens if $\Re(c) \lt \Re(a+b)$?