Interested by this question, $j$ being a positive integer, I tried to work the asymptotics of
$$S^{(j)}_n=\sum^{n}_{k=0}\frac{\binom{n}{k}}{n^k(k+j)}=\frac{\, _2F_1\left(j,-n;j+1;-\frac{1}{n}\right)}{j}$$
I quickly noticed (not a proof) that the asymptotics write
$$S^{(j)}_n=(-1)^j\left(\left(\alpha_0-\beta_0e\right)-\frac{\left(\alpha_1-\beta_1e\right)}{2n}+\frac{\left(\alpha_2-\beta_2e\right)}{24n^2}\right)+O\left(\frac{1}{n^3}\right)$$
in which the $\alpha_k$'s and $\beta_k$'s are all positive whole numbers depending on $j$.
What I found is that $$\alpha_0=(j-1)!\qquad \qquad \beta_0=\text{Subfactorial}[j-1]$$ $$\alpha_1=(j+1)!\qquad \qquad \beta_1=\text{Subfactorial}[j+1]$$ $$\alpha_2=(1+3j)(j+2)!$$ but I did not find any formal representation for $\beta_2$.
I give below a list of values ot this last coefficient as a function of $j$.
$$\left( \begin{array}{cc} j & \beta_2 \\ 1 & 11 \\ 2 & 60 \\ 3 & 443 \\ 4 & 3442 \\ 5 & 29667 \\ 6 & 281824 \\ 7 & 2936915 \\ 8 & 33374022 \\ 9 & 411167963 \\ 10 & 5462660068 \\ 11 & 77886959691 \\ 12 & 1186630738810 \\ 13 & 19242660629363 \\ 14 & 330973762825032 \end{array} \right)$$
It seems that $\frac{\beta_2}{\text{Subfactorial}[j+2]}$ is close to a straight line but it is not.
Is there any way to identify what is this sequence ?