Asymptotic behavior of $$\sum \frac {1}{\sqrt[\alpha] k}$$
for $\alpha=1$? is $\ln k$ what about $\alpha > 1$ ?
the suggested link is for $\alpha > \frac{1}{2}$ my question is about $ 0< \alpha < \frac{1}{2}$
Asymptotic behavior of $$\sum \frac {1}{\sqrt[\alpha] k}$$
for $\alpha=1$? is $\ln k$ what about $\alpha > 1$ ?
the suggested link is for $\alpha > \frac{1}{2}$ my question is about $ 0< \alpha < \frac{1}{2}$
Outline: try a comparison between series and integral, using the fact that for $\alpha > 0$ the function $f\colon x\in(0,\infty)\mapsto \frac{1}{x^{\frac{1}{\alpha}}}$ is decreasing.
But anyway, for $\alpha < 1$ the sum converges (it is a $p$-series), and you simply have $$ \sum_{k=1}^n \frac{1}{k^{\frac{1}{\alpha}}}\operatorname*{\sim}_{n\to\infty}\sum_{k=1}^\infty \frac{1}{k^{\frac{1}{\alpha}}}. $$
If $\alpha=1 $ we have the well known asymptotic for the Harmonic numbers $$\sum_{k=1}^{n}\frac{1}{k}=H_{n}\sim\log\left(n\right) $$ if $\alpha>1$ we have, using Abel's summation, $$S=\sum_{k=1}^{n}\frac{1}{k^{1/\alpha}}=\sum_{k=1}^{n}1\cdot\frac{1}{k^{1/\alpha}} $$ $$=n^{1-1/\alpha}+\frac{1}{\alpha}\int_{1}^{n}\frac{\left\lfloor t\right\rfloor }{t^{1/\alpha+1}}dt $$ and since $\left\lfloor t\right\rfloor =t+O\left(1\right) $ we have $$S=n^{1-1/\alpha}+\frac{1}{\alpha}\int_{1}^{n}\frac{1}{t^{1/\alpha}}dt+O\left(\int_{1}^{n}\frac{1}{t^{1/\alpha+1}}dt\right) $$ $$=\color{red}{\frac{\alpha n^{1-1/\alpha}}{\alpha-1}+O_{\alpha}\left(1\right).}$$ If $0<\alpha<1$ the series converges to $\zeta(1/\alpha)$.