Find $\sin\theta$ in the following trigonometric equation
$8\sin\theta = 4 + \cos\theta$
My try ->
$8\sin\theta = 4 + \cos\theta$
[Squaring Both the Sides]
=> $64\sin^{2}\theta = 16 + 8\cos\theta + \cos^{2}\theta$
=> $64\sin^{2}\theta - \cos^{2}\theta= 16 + 8\cos\theta $
[Adding on both the sides]
=> $64\sin^{2}\theta + 64\cos^{2}\theta= 16 + 8\cos\theta + 65\cos^{2}\theta$
=> $64 = 16 + 8\cos\theta + 65\cos^{2}\theta$
=> $48 = 8\cos\theta + 65\cos^{2}\theta$
=> $48 = \cos\theta(65\cos\theta + 8)$
I can't figure out what to do next !