For simplicity, let $ a := 2017 $. I claim that the only solutions to the functional equation
$$ f \big( x + \cos ( a y ) \big) = f ( x ) + a \cos f ( y ) \tag 0 \label 0 $$
are the functions of the form $ f ( x ) = n \pi + ( - 1 ) ^ n a x $, where $ n $ is a constant integer. It's easy to check that these functions indeed satisfy \eqref{0} and we only need to prove that every solution is of this form.
First, defining $ c := f ( 0 ) $ and letting $ x = 0 $ in \eqref{0} we have:
$$ f \big( \cos ( a y ) \big) = c + a \cos f ( y ) \tag 1 \label 1 $$
So, combining \eqref{0} and \eqref{1} and substituting $ \frac y a $ for $ y $, we get:
$$ f ( x + \cos y ) = f ( x ) + f ( \cos y ) - c \tag 2 \label 2 $$
For simplicity, we define $ g ( x ) := f ( x ) - c $ and \eqref{2} gives us:
$$ g ( x + \cos y ) = g ( x ) + g ( \cos y ) \tag 3 \label 3 $$
By \eqref{3}, we can inductively show that for every positive integer $ m $:
$$ g ( m \cos y ) = m g ( \cos y ) \tag 4 \label 4 $$
Now, for arbitrary real number $ x $ and $ y $, we choose the positive integer $ m $ in a way that $ \big| \frac x m \big| < 1 $, $ \big| \frac y m \big| < 1 $ and $ \big| \frac { x + y } m \big| < 1 $. So there are real numbers $ \alpha $, $ \beta $ and $ \gamma $ such that $ \frac x m = \cos \alpha $, $ \frac y m = \cos \beta $ and $ \frac { x + y } m = \cos \gamma $. Now by \eqref{3} and \eqref{4} we have:
$$ g ( x + y ) = g ( m \cos \gamma ) = m g ( \cos \gamma ) = m g \Big( \frac { x + y } m \Big) = m g ( \cos \alpha + \cos \beta ) \\ = m g ( \cos \alpha ) + m g ( \cos \beta ) = g ( m \cos \alpha ) + g ( m \cos \beta ) = g ( x ) + g ( y ) $$
So $ g $ satisfies Cauch's functional equation. Also by \eqref{1} we have $g \big( \cos ( a y ) \big) = a \cos \big( c + g ( y ) \big)$. Thus $ g $ is a bounded function on the interval $ [ -1 , 1 ] $, since $ \cos $ is a bounded function. This shows that $ g $ must be of the form $ g ( x ) = b x $ for some constant real number $ b $ (see here). Hence we have:
$$ b \cos ( a y ) = a \cos ( b y + c ) $$
It takes some effort to show that this leads to $ c = n \pi $ for some constant integer $ n $, and $ b = ( - 1 ) ^ n a $ for the same $ n $.