We consider the partial fraction decomposition of $X^{k+1}/f(X)$, where $0 \leq k \leq n - 1$.
Suppose $0 \leq k \leq n - 2$.
There exist $c_i \in K$ such that $X^{k+1}/f(X) = \sum_i c_i /(X - \alpha_i)$.
Muliplying the both sides by $f(X)$, we get
$X^{k+1} = \sum_i c_i \frac{f(X)}{X - \alpha_i}$.
Substituting $X = \alpha_i$, we get $\alpha_i^{k+1} = c_i f'(\alpha_i)$.
Hence $c_i = \alpha_i^{k+1}/f'(\alpha_i)$.
Hence $\frac{X^{k+1}}{f(X)} = \sum_i \frac{\alpha_i^{k+1}}{f'(\alpha_i)(X - \alpha_i)}$.
Substituting $X = 0$, we get
$\sum_i \frac{\alpha_i^k}{f'(\alpha_i)} = 0$.
Note that this is valid when $f(0) = 0$.
Next we consider the case $k + 1 = n$.
There exist $d_i \in K$ such that $\frac{X^n}{f(X)} = 1 + \sum_i \frac{d_i}{X - \alpha_i}$.
Muliplying the both sides by $f(X)$, we get
$X^n = f(X) + \sum_i \frac{d_i f(X)}{X - \alpha_i}$.
Substituting $X = \alpha_i$, we get $\alpha_i^n = d_i f'(\alpha_i)$.
Hence $d_i = \frac{\alpha_i^n}{f'(\alpha_i)}$.
Hence $\frac{X^n}{f(X)} = 1 + \sum_i \frac{\alpha_i^n}{f'(\alpha_i)(X - \alpha_i)}$.
Substituting $X = 0$, we get $0 = 1 - \sum_i \frac{\alpha_i^{n-1}}{f'(\alpha_i)}$.
Hence $\sum_i \frac{\alpha_i^{n-1}}{f'(\alpha_i)} = 1$.
Note that this is valid when $f(0) = 0$.
Remark
Instead of the partial fraction decompositions, we can use Lagrange's interpolation formula(e.g. the lemma 4 of my answer to this question).