If $p$ is a prime number, the largest number $n$ such that $p^n \mid N!$ is
$\displaystyle
n = \sum_{i=1}^\infty \left \lfloor \dfrac{N}{p^i}\right \rfloor$.
Note that this is really a finite series since, from some point on, all of the $\left \lfloor \dfrac{N}{p^i}\right \rfloor$ are going to be $0$. There is also a shortcut to computing $\left \lfloor \dfrac{N}{p^{i+1}}\right \rfloor$ because it can be shown that
$$\left \lfloor \dfrac{N}{p^{i+1}}\right \rfloor =
\left \lfloor
\dfrac{\left \lfloor \dfrac{N}
{p^i}
\right \rfloor}{p}\right \rfloor$$
For $77!$, we get
$\qquad \left \lfloor \dfrac{77}{11}\right \rfloor = 7$
$\qquad \left \lfloor \dfrac{7}{11}\right \rfloor = 0$
So $11^7 \mid 77!$ and $11^8 \not \mid 77!$
Since $7 < 11$, it follows immediatley that $7^7 \mid 77!$. But we can also compute
$\qquad \left \lfloor \dfrac{77}{7}\right \rfloor = 11$
$\qquad \left \lfloor \dfrac{11}{7}\right \rfloor = 1$
$\qquad \left \lfloor \dfrac{1}{7}\right \rfloor = 0$
So $7^{12} \mid 77!$ and $7^{13} \not \mid 77!$
It follows that $77^7 = 7^{7} 11^7 \mid 77!$.
Added 3/9/2018
The numbers are small enough that we can show this directly
Multiples of powers of $7$ between $1$ and $77$
\begin{array}{|r|ccccccccccc|}
\hline
\text{multiple} & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 & 77 \\
\hline
\text{power} & 7 & 7 & 7 & 7 & 7 & 7 & 7^2 & 7 & 7 & 7 & 7 \\
\hline
\end{array}
So $7^{12} \mid 77!$.
Multiples of powers of $11$ between $1$ and $77$
\begin{array}{|r|ccccccc|}
\hline
\text{multiple} & 11 & 22 & 33 & 44 & 55 & 66 & 77\\
\hline
\text{power} & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
\hline
\end{array}
So $11^7 \mid 77!$.
Hence $77^7 \mid 7^{12}11^7 \mid 77!$.