$$\lim_{n \to {\infty}} \frac{ \sum_{i=1}^n\lfloor i^3x \rfloor}{ n^4}$$
My work $$\lim_{n \to {\infty}} \frac{ \sum_{i=1}^ni^3x}{ n^4} -\lim_{n \to {\infty}} \frac{ \sum_{i=1}^n{\{i^3x\}}}{ n^4}$$ $$\lim_{n \to {\infty}} \frac{x{((n)(n+1))}^2}{4 {n^4}}-\lim_{n \to {\infty}}\frac{ \sum_{i=1}^n{\{i^3x\}}}{ n^4}$$
{.} represent fractional part
Can I say this $$\lim_{n \to {\infty}}\frac{ \sum_{i=1}^n{\{i^3x\}}}{ n^4} = 0$$