I have been trying to evaluate the following integral: $$\int^{0}_{-\infty}e^{-i\omega t}dt$$ but I'm having trouble arriving at the correct result. My workings so far are as follows: $$\int^{0}_{-\infty}e^{-i\omega t}dt = \lim_{R\rightarrow\infty}\int^{0}_{-R}e^{-i\omega t}dt = \lim_{R\rightarrow\infty}\left(\int^{R}_{-R}e^{-i\omega t}dt - \int^{R}_{0}e^{-i\omega t}dt\right)\\ = 2\pi\delta(\omega) - \lim_{R\rightarrow\infty}\frac{i}{\omega}\left(e^{i\omega R}-1\right)\qquad\quad\quad\quad\;\;\;$$ but I'm stuck with how to proceed from here. (I know that the answer should be $$\int^{0}_{-\infty}e^{-i\omega t}dt=\pi\delta(\omega) +i\mathcal{P}\frac{1}{\omega}$$ where $\mathcal{P}$ denotes the Cauchy principal value).
Any tips on how to proceed would be much appreciated!