what are the steps to integrate the following without using numerical methods-
$$ \int \sin(x^2)\,dx.$$
what are the steps to integrate the following without using numerical methods-
$$ \int \sin(x^2)\,dx.$$
Use:
$$\sin\left(x^2\right)=\sum_{n=0}^{\infty}\frac{(-1)^n\left(x^2\right)^{1+2n}}{(1+2n)!}$$
So, we get:
$$\int\sin\left(x^2\right)\space\text{d}x=\int\sum_{n=0}^{\infty}\frac{(-1)^n\left(x^2\right)^{1+2n}}{(1+2n)!}\space\text{d}x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(1+2n)!}\int\left(x^2\right)^{1+2n}\space\text{d}x=$$
Now, use:
$$\int a^b\space\text{d}a=\frac{a^{b+1}}{b+1}+\text{C}$$
$$\sum_{n=0}^{\infty}\frac{(-1)^n}{(1+2n)!}\int x^{2+4n}\space\text{d}x=\sum_{n=0}^{\infty}\frac{(-1)^nx^{3+4n}}{(4n+3)(1+2n)!}+\text{C}$$