If $\mathcal{U}$ is an ultrafilter on a set $X$, it can be defined a function $\mu_{\mathcal{U}}\colon\mathcal{P}(X)\to\{0,1\}$ such that, for all $A\subseteq X$ it holds $\mu_{\mathcal{U}}(A)=1$ iff $A\in\mathcal{U}$.
Are $\mu_{\mathcal{U}}(\emptyset)=0$ and finite additivity enough to prove that $\mu_{\mathcal{U}}$ is well-defined? Of course, given a subset $E$ of $X$, we can split $E$ into disjoint sets $E_1,\dots,E_n$. If $\mu_{\mathcal{U}}(E)=1$, then exactly one $E_i$ belongs to $\mathcal{U}$, so $\mu_{\mathcal{U}}(E_1)+\dots+\mu_{\mathcal{U}}(E_n)=1$. If $\mu_{\mathcal{U}}(E)=0$, then none of the $E_i$'s belongs to $\mathcal{U}$, so $\mu_{\mathcal{U}}(E_1)+\dots+\mu_{\mathcal{U}}(E_n)=0$. Did I prove that $\mu_{\mathcal{U}}$ is actually a function, hence a finitely additive measure?