2

I need to prove the following statements:

Prove the following statements:

(a) if $a$ is odd then $a^4 ≡ 1 \pmod 4$,

(b) if $5$ does not divide a, then $a^4 \equiv 1 \pmod 5$.

Can I do this inductively? Or should I be adopting another approach? I know for (a), if $a$ is odd, $a^4$ will also be odd, as the product of odd numbers is always odd. This would mean that $4 \mid (a^4 - 1)$, which would always be an even number, but of course not all even numbers are divisible by 4 (or rather $(a^4 - 1)$ would always be an even number). I also know you can obtain all the congruence cases of $1 \pmod 5$ by adding or subtracting $5$, beginning at $1$.

Chris T
  • 813
  • For (a), see http://math.stackexchange.com/questions/1827165/prove-that-for-all-odd-integer-n-n4-1-pmod-16. – lhf Jul 05 '16 at 14:47

4 Answers4

3

Hint: For the first $(2n+1)^4=1+4m$

For the second, compute $1^4,2^4,3^4,4^4 \pmod 5$

awllower
  • 16,536
2

Since the moduli are small, you can simply go through all the cases:

1. If $a$ is odd, then $a \equiv 1$ or $3 \pmod 4$. $$1^4 = 1 \pmod 4$$ $$3^4 = \ldots \equiv 1 \pmod 4$$

2. If $5$ does not divide $a$, then $a \equiv 1,2,3$ or $4 \pmod 5$. $$1^4 = 1 \pmod 5$$ $$2^4 = \ldots \equiv 1 \pmod 5$$ $$\text{etc.}$$

Théophile
  • 24,627
1

Hints:
a) If $a$ is odd, then $a$ is of the form $2k+1.$ So expand $a^2.$
b) If $5\not\mid a,$ then $a$ is congruent modulo $5$ to one of $1,2,3,4,$ so you can enumerate these four cases.
Also, have a look at Euler's theorem, or just Fermat's little theorem.

Hope this helps.

awllower
  • 16,536
1

If $a$ is odd, then $a^4\equiv1\pmod4$:

  • $a\equiv\color\red1\pmod4 \implies a^4\equiv\color\red1^4\equiv1\pmod4$
  • $a\equiv\color\red3\pmod4 \implies a^4\equiv\color\red3^4\equiv81\equiv1\pmod4$

If $5$ does not divide $a$, then $a^4\equiv1\pmod5$:

  • $a\equiv\color\red1\pmod5 \implies a^4\equiv\color\red1^4\equiv1\pmod5$
  • $a\equiv\color\red2\pmod5 \implies a^4\equiv\color\red2^4\equiv16\equiv1\pmod5$
  • $a\equiv\color\red3\pmod5 \implies a^4\equiv\color\red3^4\equiv81\equiv1\pmod5$
  • $a\equiv\color\red4\pmod5 \implies a^4\equiv\color\red4^4\equiv256\equiv1\pmod5$
barak manos
  • 43,109