$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{S} & =
\sum_{k = 1}^{\infty}{\pars{3k - 3}! \over \pars{3k}!} =
\sum_{k = 0}^{\infty}{1 \over \pars{3k + 3}\pars{3k + 2}\pars{3k + 1}}
\\[3mm] & =
\sum_{k = 0}\bracks{%
{1 \over 6\pars{k + 1}} + {1 \over 2\pars{3k + 1}} - {1 \over 3k + 2}}
\\[3mm] & =
{1 \over 6}\sum_{k = 0}^{\infty}\pars{{1 \over k + 1} - {1 \over k + 1/3}} +
{1 \over 3}\sum_{k = 0}^{\infty}\pars{{1 \over k + 1/3} - {1 \over k + 2/3}}
\\[3mm] & =
{1 \over 6}\bracks{\Psi\pars{1 \over 3} - \Psi\pars{1}} +
{1 \over 3}\bracks{\Psi\pars{2 \over 3} - \Psi\pars{1 \over 3}}
\\[3mm] & =
\fbox{$\ds{\
\color{#f00}{-\,{1 \over 6}\,\Psi\pars{1 \over 3} + {1 \over 6}\,\gamma +
{1 \over 3}\,\Psi\pars{2 \over 3}}\ }$}
\end{align}
$\ds{\gamma}$ and $\ds{\Psi}$ are the Euler-Mascheroni constant and the Digamma Function, respectively. Note that $\ds{\Psi\pars{1} = -\gamma}$.
Also $\ds{\pars{~\mbox{see}\ \mathbf{8.366}.6.\ \mbox{and}\ \mathbf{8.366}.7.\ \mbox{in Gradshteyn & Rizhik, page}\ 905,\ 7^{\mathrm{th}}\ \mbox{ed.}~}}$,
\begin{align}
&\left\lbrace\begin{array}{rcl}
\ds{\Psi\pars{1 \over 3}} & \ds{=} &
\ds{-\gamma - {\root{3} \over 6}\,\pi - {3 \over 2}\,\ln\pars{3}}
\\[2mm]
\ds{\Psi\pars{2 \over 3}} & \ds{=} &
\ds{-\gamma + {\root{3} \over 6}\,\pi - {3 \over 2}\,\ln\pars{3}}
\end{array}\right.
\\[5mm]
\mbox{which leads to}\quad &\
\color{#f00}{S} =
\sum_{k = 1}^{\infty}{\pars{3k - 3}! \over \pars{3k}!} =
\color{#f00}{{1 \over 12}\bracks{\root{3}\pi - 3\ln\pars{3}}} \approx 0.1788
\end{align}