The sequence $\{a_0,a_1,...a_x\}$ has closed form $a_n=\sum_{i=0}^{\infty} \Delta^i(0) {n \choose i}$ where $\Delta a_n$ denotes the operation mapping $a_n$ to $a_{n+1}-a_n$ and $\Delta^i(0)$ is shorthand for this operation iterated $i$ times on $a_n$ and then evaluated at $n=0$. Furthermore $\sum_{n=0}^{x} {n \choose k}={x+1 \choose k+1}$ and a polynomial of degree $n$ can be determined uniquely from $n+1$ points. Combining these results we may get:
$$\sum_{k=1}^{x} k^1=1{x+1 \choose 2}$$
$$f(1)=1$$
$$\sum_{k=1}^{x} k^2=1{x+1 \choose 2}+2{x+1 \choose 3}$$
$$f(2)=(1,2)$$
$$\sum_{k=1}^{x} k^3=1{x+1 \choose 2}+6{x+1 \choose 3}+6{x+1 \choose 4}$$
$$f(3)=(1,6,6)$$
Question
Is there expression for $f$ without the use of $\Delta^i(0)$?