How to find summation of the series $1 + \dfrac {1}{3} + \dfrac {1\cdot 3}{3\cdot 6} + \dfrac {1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \dfrac {1\cdot 3\cdot 5\cdot 7}{3\cdot 6\cdot 9\cdot 12} + .....$ ?
I can't find any particular sequence.Please help!
How to find summation of the series $1 + \dfrac {1}{3} + \dfrac {1\cdot 3}{3\cdot 6} + \dfrac {1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \dfrac {1\cdot 3\cdot 5\cdot 7}{3\cdot 6\cdot 9\cdot 12} + .....$ ?
I can't find any particular sequence.Please help!
Hint: For $x\in\mathbb{C}$ with $|x|<\frac12$, $$\sum_{n=0}^\infty\,\frac{1}{2^n}\binom{2n}{n}\,x^n=\sum_{n=0}^\infty\,\binom{-1/2}{n}\,(-2x)^n=(1-2x)^{-1/2}\,.$$
$$\begin{eqnarray*}1+\sum_{k\geq 1}\frac{(2k-1)!!}{k! 3^k}=1+\sum_{k\geq 1}\frac{(2k)!}{k!^2 6^k}&=&1+\sum_{k\geq 1}\binom{2k}{k}\frac{1}{6^k}\\&=&\sum_{k\geq 0}\binom{2k}{k}\frac{1}{6^k}\\&=&\frac{1}{\sqrt{1-\frac{4}{6}}}=\color{red}{\sqrt{3}}\end{eqnarray*}$$ since the generating function for central binomial coefficients is directly related with the generating function of Catalan numbers.
Using Binomial expansion of $$(1-x)^{-n} = 1+nx+\frac{n(n+1)}{2}x^2+\frac{n(n+1)(n+2)}{6}x^3+.......$$
So we get $$nx=\frac{1}{3}$$ and $$\frac{nx(nx+x)}{2}=\frac{1}{3}\cdot \frac{3}{6}$$
We get $$\frac{1}{3}\left(\frac{1}{3}+x\right)=\frac{1}{3}\Rightarrow x=\frac{2}{3}$$
So we get $$n=\frac{1}{2}$$
So our series sum is $$(1-x)^{-n} = \left(1-\frac{2}{3}\right)^{-\frac{1}{2}} = \sqrt{3}$$