I dont understand how to solve this question:
I need to find a closed formula for :
$$\sum_{k=0}^n k\,5^k$$
Thanks a lot!
I dont understand how to solve this question:
I need to find a closed formula for :
$$\sum_{k=0}^n k\,5^k$$
Thanks a lot!
Here is an elementary approach, without calculus:
$$\begin{align*} \sum_{k=0}^nk5^k&=\sum_{k=1}^nk5^k\\ &\overset{(1)}=\sum_{k=1}^n\sum_{\ell=1}^k5^k\\ &\overset{(2)}=\sum_{\ell=1}^n\sum_{k=\ell}^n5^k\\ &\overset{(3)}=\sum_{\ell=1}^n\frac{5^{n+1}-5^\ell}{5-1}\\ &=\frac14\sum_{\ell=1}^n\left(5^{n+1}-5^\ell\right)\\ &=\frac14\left(\sum_{\ell=1}^n5^{n+1}-\sum_{\ell=1}^n5^\ell\right)\\ &=\frac14\left(n5^{n+1}-\frac{5^{n+1}-5}{5-1}\right)\\ &=\frac14\left(n5^{n+1}-\frac14\left(5^{n+1}-5\right)\right)\\ &=\frac1{16}\left(4n5^{n+1}-5^{n+1}+5\right)\\ &=\frac5{16}\big((4n-1)5^n+1\big) \end{align*}$$
$(1)$: The $k=0$ term is $0$ anyway.
$(2)$: Reverse the order of summation.
$(3)$: Sum of a finite geometric series.
The basic idea here is the same as in this argument for the sum of a similar infinite series.
Hint: Generalise the question and find a closed form for $$\sum_{k=0}^n kx^k=x\sum_{k=1}^{n-1} kx^{k-1}=x\biggl(\sum_{k=0}^{n-1}x^k\biggr)'.$$