I have tried $f(n) = \int_1^n \ln x dx$, but it fails. The difference is $$\lim_{n\to \infty}(\ln n! - \int_1^n \ln x dx)$$
$\int_1^n \ln x dx = n\ln n -n +1 \\ \ln n! - \int_1^n \ln x dx = \ln n! - n\ln n +n -1 = \ln(\frac{n!e^n}{n^n})-1$
where $\frac{n!e^n}{n^n}\to \infty$, so the limit diverges.
Do we have some function $f(n)$that converges to the series $\ln n!$ ?