Let $\mathfrak{a}:=(f_1,\ldots,f_r)\subset k[x_1,\ldots,x_n],\mathfrak{b}:=(g_1,\ldots,g_s)\subset k[y_1,\ldots,y_m]$ be radical ideals. Then I wish to prove that $\mathfrak{c}:=(f_1,\ldots,f_r,g_1,\ldots,g_s)\subset k[x_1,\ldots,x_n,y_1,\ldots,y_m]$ is a radical ideal. If we set $x=(x_i)_i,\ y=(y_i)_i$ for simplicity, then otherwise stated, I wish to prove that $$\sqrt{k[x,y]\mathfrak{a}+[x,y]\mathfrak{b}}=k[x,y]\mathfrak{a}+[x,y]\mathfrak{b}=\mathfrak{c}$$ Trivially we have $\supseteq$. Suppose $f^t\in k[x,y]\mathfrak{a}+[x,y]\mathfrak{b}$ for some $t\in\mathbb{N}$, so let $f^t=f'(x,y)f''(x)+g'(x,y)g''(y),\ f',g'\in k[x,y],\ f''\in\mathfrak{a},\ g''\in\mathfrak{b}$. However, I can't figure out the next step from here.
Edit: $k$ is algebraically closed.