Question: Find $Aut\left ( \mathbb{Z}_{6} \right )$
Note that $\mathbb{Z}_{6}=\left \{ 0,1,2,3,4,5 \right \}$
Observe:
$\forall k \in \mathbb{Z}_{6}$, $k^{6}=e \equiv 0(mod6)$
Recall: Suppose $\phi$ is an isomorphism from a group G to G. Then $\forall a \in G, \left |\phi \left ( a \right ) \right |=\left | a \right |$
But $\alpha$ is an isomorphism so is by definition also a Homomorphism. So, $\forall k \in \mathbb{Z}_{6} \left ( k \right )\alpha=\left ( 1+\cdot \cdot \cdot +1\right )\alpha=\left ( 1 \right )\alpha+\cdot \cdot \cdot +\left ( 1 \right )\alpha=k\left ( 1 \right )\alpha$
Recall: $Aut\left ( \mathbb{Z}_{n} \right )\cong U\left ( n \right )$
So, $Aut\left ( \mathbb{Z}_{6} \right )\cong U(6)=\left \{ 1,5 \right \}$
Thus, we deduce the possible candidates to be $\left ( 1 \right )\alpha=1$ or $\left ( 1 \right )\alpha=5$
Here is where I am unable to progress further. Any help is appreciated.