Suppose we seek to verify that
$$\sum_{k=1}^n {n\choose k} (-1)^{k+1} \frac{1}{k} = H_n.$$
Now observe that
$$\frac{1}{k} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{k+1}} \log\frac{1}{1-z} \; dz$$
where we take $\epsilon < 1$ so that the logarithmic term is analytic.
We get for the sum
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z} \log\frac{1}{1-z}
\sum_{k=1}^n {n\choose k} (-1)^{k+1} \frac{1}{z^k}
\; dz$$
The term for $k=0$ yields
$$-\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z} \log\frac{1}{1-z} = 0$$
and we may lower $k$ to zero, getting for the sum
$$-\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z} \log\frac{1}{1-z}
\sum_{k=0}^n {n\choose k} (-1)^{k} \frac{1}{z^k}
\; dz
\\ = -\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z}
\left(1-\frac{1}{z}\right)^n
\log\frac{1}{1-z}
\; dz
\\ = -\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(z-1)^n \log\frac{1}{1-z} \; dz.$$
Now put $$\frac{z}{z-1} = w
\quad\text{so that}\quad
z = -\frac{w}{1-w}
\\ \text{and}\quad
dz = - \frac{1}{(1-w)^2} dw
\quad\text{and}\quad
\frac{1}{1-z} = 1-w.$$
to get
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(z-1)^{n+1} \frac{1}{1-z} \log\frac{1}{1-z} \; dz
\\ = - \frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{n+1}}
(1-w) \log(1-w) \frac{1}{(1-w)^2} \; dw
\\ = \frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{n+1}}
\frac{1}{1-w} \log\frac{1}{1-w} \; dw.$$
This evaluates to $$H_n$$ by inspection since
$$\log\frac{1}{1-z} = \sum_{q\ge 1} \frac{z^q}{q}$$
as seen earlier.