Evaluate using complex numbers: $$\prod^{n}_{k=1}\cos\left(\frac{k\pi}{m}\right)$$ where $m=2n+1$.
$\bf{My\; Try::}$ Let $\displaystyle P = \prod^{n}_{k=1}\cos\left(\frac{k\pi}{m}\right).$ Now let $\displaystyle \cos \left(\frac{k\pi}{m}\right) = \frac{e^{\frac{ik}{m}}+e^{\frac{-ik}{m}}}{2}$ and Let $e^{\frac{i\pi}{m}} = \omega$
So we get $$P = \frac{1}{2^n}\left\{(\omega+\omega^{-1})(\omega^2+\omega^{-2})\cdots(\omega^n+\omega^{-n})\right\}$$
So $$P = \frac{(1+\omega^2)(1+\omega^4)\cdots(1+\omega^{2n})}{2^n\cdot \omega^{\frac{n(n+1)}{2}}}$$
Now How can i solve after that, Help required, Thanks