1

Given that $n,a,b \in \mathbb{N}$ and $n\mid(a^n-b^n)$ , can we prove or disprove $n\mid(a-b)$ ?

Using Fermat's little theorem, we can prove the case when n is a prime number. What about the case when n is a composite number?
I also know that $(a-b)\mid(a^n-b^n)$ .

Linear
  • 137
  • 6

2 Answers2

4

We can prove $$8|(p^2-q^2)$$ where $p,q$ are odd

But we can easily choose $p\not\equiv q\pmod 8$

0

We have $$a^n-b^n = (a-b)\left(a^{n-1} + a^{n-2}b+a^{n-3}b^2+\dots+ab^{n-2} + b^{n-1}\right)$$ So, if $n|(a^n-b^n)$, it is not necessarily true that $n|(a-b)$.

Aritra Das
  • 3,528