According to the linked paper On Solvable Quintics $X^5+aX+b$ and $X^5+aX^2+b$ by Blair K. Spearman and Kenneth S. Williams, the solutions are as follows (we take $s=5$ in the first equation and $s=1$ for the rest):
$$x=\omega^{j}u_1+\omega^{2j}u_2+\omega^{3j}u_3+\omega^{4j}u_4$$
$\omega$ - the fifth root of unity.
$$x^5-5x^2-3=0 $$
$$u_1=\left(-\frac{1}{4}+\frac{\sqrt{5}}{20}-\frac{1}{100} \sqrt{150+30\sqrt{5}}+\frac{1}{50} \sqrt{150-30\sqrt{5}} \right)^{1/5}$$
$$u_2=\left(-\frac{1}{4}-\frac{\sqrt{5}}{20}-\frac{1}{100} \sqrt{150+30\sqrt{5}}-\frac{1}{50} \sqrt{150-30\sqrt{5}}\right)^{1/5}$$
$$u_3=\left(-\frac{1}{4}-\frac{\sqrt{5}}{20}+\frac{1}{100} \sqrt{150+30\sqrt{5}}+\frac{1}{50} \sqrt{150-30\sqrt{5}}\right)^{1/5}$$
$$u_4=\left(-\frac{1}{4}+\frac{\sqrt{5}}{20}+\frac{1}{100} \sqrt{150+30\sqrt{5}}-\frac{1}{50} \sqrt{150-30\sqrt{5}}\right)^{1/5}$$
$$x^5-5x^2+15=0 $$
$$u_1=\left(\frac{5}{4} + \frac{13\sqrt{5}}{20} - \frac{7}{100} \sqrt{750+330\sqrt{5}} \right)^{1/5}$$
$$u_2=\left(\frac{5}{4} - \frac{13\sqrt{5}}{20} - \frac{7}{100} \sqrt{750-330\sqrt{5}} \right)^{1/5}$$
$$u_3=\left(\frac{5}{4} - \frac{13\sqrt{5}}{20} + \frac{7}{100} \sqrt{750-330\sqrt{5}} \right)^{1/5}$$
$$u_4=\left(\frac{5}{4} + \frac{13\sqrt{5}}{20} + \frac{7}{100} \sqrt{750+330\sqrt{5}} \right)^{1/5}$$
$$ x^5-25x^2-300=0 $$
$$u_1=\left(-\frac{25}{2} - \frac{5\sqrt{5}}{2} - \frac{5}{2} \sqrt{30+6\sqrt{5}} \right)^{1/5}$$
$$u_2=\left(-\frac{25}{2} + \frac{5\sqrt{5}}{2} - \frac{5}{2} \sqrt{30-6\sqrt{5}} \right)^{1/5}$$
$$u_3=\left(-\frac{25}{2} + \frac{5\sqrt{5}}{2} + \frac{5}{2} \sqrt{30-6\sqrt{5}} \right)^{1/5}$$
$$u_4=\left(-\frac{25}{2} - \frac{5\sqrt{5}}{2} + \frac{5}{2} \sqrt{30+6\sqrt{5}} \right)^{1/5}$$
$$ x^5-100x^2-1000=0 $$
$$u_1=-2^{6/5},~~~~u_2=-2^{7/5},~~~~u_3=2^{3/5},~~~~u_4=-2^{4/5}$$
$$x^5-250x^2-625=0 $$
$$u_1=(-125+50 \sqrt{5})^{1/5}$$
$$u_2=\frac{(-375-175 \sqrt{5})^{1/5}}{2^{1/5}}$$
$$u_3=\frac{(-375+175 \sqrt{5})^{1/5}}{2^{1/5}}$$
$$u_4=(-125-50 \sqrt{5})^{1/5}$$