Good morning, i'm working in this exercise and i solve this, but, i don't know it's fine, please how you can find the limit point?
1) $\left\{ 1-\frac{1}{n}\::\:n=1,2,3...\right\}$ Well, i say the limit point is 1. for the Archimedean property.
2) $\left\{ \left(1+\frac{1}{n}\right)^{n}\::\:n=1,2,3,...\right\} $ Limit point = 1.
3) $\sqrt[n]{n}\:n=1,2...$ Limit point:1.
Now,how i can prove the limit point is 1?
Edit: Definition of limit point: Let $A\in\mathbb{R}$, and $p\in\mathbb{R}$, exist $r>0$ then $A\cap\left\{ \left(p-r,p+r\right)-\left\{ p\right\} \right\} \neq\phi $