2

I probably have to use Euler's function but I'm not sure how.

Lindow
  • 101
  • 7

6 Answers6

6

$$\phi(15) = 8$$ which means $$a^8 \equiv 1\pmod {15}$$

$$ 40167 = 7 + 5020 \times 8$$

And $$982 = 65 \times 15 + 7$$

$$982^{40167} \equiv 7^{7} \equiv 13 \pmod {15}$$

EDIT: one may figure out how to calculate $7^{7}$

The story is really simple:

$$7^2 \equiv 49 \equiv 4 \pmod{15} $$

Therefore,

$$7^4 \equiv 4\times4 \equiv 1 \pmod{15} $$

$$7^7 \equiv 7^4 7^2 7 \equiv 1\times 4 \times 7 \equiv 13 \pmod {15}$$

Zau
  • 3,909
  • 12
  • 29
4

One of the standard approaches is to find the remainder when divided by $3$ and $5$ respectively, then use Chinese Remainder Theorem.

$982^{40167}\equiv1^{40167}\equiv1(\text{mod }3)$

$982^{40167}\equiv2^{40167}\equiv2^3\equiv3(\text{mod }5)$ (by the cyclic property $2^4\equiv1(\text{mod }5)$)

Now by Chinese Remainder Theorem or simply some trial and error,

$982^{40167}\equiv13(\text{mod }15)$

Brian Cheung
  • 1,977
1

One way to handle this is to look mod $3$ and mod $5$ and use the Chinese Remainder Theorem.

To simplify, we can reduce mod $3$ and mod $5$ and apply Little Fermat: $$ 982^{40167}\equiv1^{40167}\equiv1\pmod{3} $$ and $$ 982^{40167}\equiv2^{40167}\equiv2^3\equiv3\pmod{5} $$ The solution is $13\pmod{15}$.

robjohn
  • 345,667
0

One way is to say that $982\equiv 7\pmod{15}$, so $982^4\equiv 7^4\equiv (7^2)^2\equiv 4^2\equiv 1\pmod{15}$.

That means that $982^{40167}=982^{40164}\cdot 982^3\equiv (982^4)^{10033}\cdot 7^3\equiv 1\cdot 13=13\pmod{15}$.

0

$982\equiv 7\pmod{15}$ and $7^4\equiv 1\pmod{15}$ hence $$982^{40167}\equiv 7^{4\cdot10041+3}\equiv 1^{10041}\cdot7^3\equiv\color{red}{13}\pmod{15}$$

Piquito
  • 29,594
-1

You can do it like that: $982^{40167}\equiv7^{40167}\equiv343^{13389}\equiv13^{13389}\equiv2197^{4463}\equiv7^{4463}\equiv7*49^{2231}\equiv13*1^{1115}\equiv13(mod 15)$

janqo
  • 1