Let $P(x)=ax^{2014}-bx^{2015}+1$ and $Q(x)=x^2-2x+1$ be the polynomials where $a$ and $b$ are real numbers. If polynomial $P$ is divisible by $Q$, what is the value of $a+b$.
This is what I have tried so far: Since $Q(x)|P(x)$ we have $P(1)=0$, therefore $a-b+1=0$. Problem is because we cannot obtain system of equations, because polynomial $Q(x)$ has double root at $x=1$. From equation $a-b+1$ we cannot find $a+b$, so how to find out value of $a+b$ or $a^2-b^2$?