Let $X_1$, $X_2$ and $X_3$ be independent random variable with continuous distribution $$f(x;\theta)=\frac{1}{\theta}I_{(0,\theta]}(x), \ \theta \gt 0$$ I need to find distribution of $Z=\frac{X_{(3)}}{\theta}$, where $X_{(3)}=\max\{X_1,X_2,X_3\}$
I read this and this. I would start with the cumulative distribution function of $f(x;\theta)$
$$F(x;\theta)= \left \{ \begin{array}{cl} \int_{0}^{x}\frac{1}{\theta}dv = \frac{x}{\theta}& 0 \lt x \leq \theta \\ 0 & \text{Otherwise} \end{array} \right .$$
Now, $\mathbb{P}(\max\{X_1,X_2,X_3\}\leq z)=\mathbb{P}((X_1,X_2,X_3)\leq z)$. They are independent thus $\mathbb{P}((X_1,X_2,X_3)\leq z)=\mathbb{P}(X_1\leq z)\mathbb{P}(X_2\leq z)\mathbb{P}(X_3\leq z)=(F(z;\theta))^3=(\frac{z}{\theta})^3$
Am I close to solution? :-)