So we are speaking of "over-interpolation", meaning that we are interpolating $(n+1)$ points laying on a polynomial curve of degree $q$ ($q \le n$)
with a polynomial of higher degree, which then will reduce to having degree $q$.
In fact, in general, interpolating $n+1$ points will produce a polynomial of degree at most $n$.
$$
p_{\,n} (x) = \sum\limits_{0 \le \,\,i\, \le \,n} {y_{\,i} \frac{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x - x_{\,j} } \right)} }}{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x_{\,i} - x_{\,j} } \right)} }}} \quad \Rightarrow \quad \deg \left( {p_{\,n} (x)} \right) \le n
$$
and if the points are actually laying on a polynomial of degree <= $n$, we will get exactly that polynomial.
$$
y_{\,i} = p_{\,q} (x_{\,i} )\quad \left| \begin{array}{l}
\;0 \le q \le n \\
\;\forall i\;:\;0 \le i \le n \\
\end{array} \right.\quad \Rightarrow \quad p_{\,n} (x) = \sum\limits_{0 \le \,\,i\, \le \,n} {p_{\,q} (x_{\,i} )\frac{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x - x_{\,j} } \right)} }}{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x_{\,i} - x_{\,j} } \right)} }}} \quad = p_{\,q} (x)
$$
In particular
$$
x^{\,q} \quad \left| {\;0 \le q \le n\;} \right.\quad = \sum\limits_{0 \le \,\,i\, \le \,n} {x_{\,i} ^{\,q} \frac{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x - x_{\,j} } \right)} }}{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {x_{\,i} - x_{\,j} } \right)} }}}
$$
The algebric demonstration is not straightforward, it requires to expand the product in ${\left( {x - x_{\,j} } \right)}$,
recurring to Vieta's formulas and then collect the terms of the summation in $x^0$, $x^1$,
and/or recurring to Divided Differences, …
But we can take a blick on what is going on, if we take the simple case of interpolating the points
$\left\{ {\left( {0,0} \right), \ldots ,\left( {k,k^{\,q} } \right), \ldots ,\left( {n,n^{\,q} } \right)} \right\}$
and limit our attention to the coefficient of $x^n$
$$
\begin{array}{l}
\left[ {x^{\,n} } \right]p_{\,n} (x) = \sum\limits_{0 \le \,\,i\, \le \,n} {\frac{{i^{\,q} }}{{\prod\limits_{j\;:\;0 \le \,j\, \ne \,i\, \le \,n} {\left( {i - j} \right)} }}} = \\
= \sum\limits_{0 \le \,\,i\, \le \,n} {\frac{{i^{\,q} }}{{\prod\limits_{0 \le \,j\,\, \le \,i - 1} {\left( {i - j} \right)} \prod\limits_{i + 1 \le \,j\,\, \le \,n} {\left( {i - j} \right)} }}} = \\
= \sum\limits_{0 \le \,\,i\, \le \,n} {\frac{{i^{\,q} }}{{i!\prod\limits_{1 \le \,k\, \le \,n - i} {\left( { - k} \right)} }}} = \sum\limits_{0 \le \,\,i\, \le \,n} {\left( { - 1} \right)^{\,n - i} \frac{{i^{\,q} }}{{i!\left( {n - i} \right)!}}} = \\
= \frac{1}{{n!}}\sum\limits_{0 \le \,\,i\, \le \,n} {\left( { - 1} \right)^{\,n - i} \left( \begin{array}{c}
n \\
i \\
\end{array} \right)i^{\,q} = } \frac{1}{{n!}}\Delta _{\,x} ^n \,x^{\,q} \left| {_{x\, = \,0} } \right. = \\
= n{\rm th}\,{\rm coefficient}\,{\rm in}\,{\rm Newton}\,{\rm expansion}\,{\rm of}\,x^{\,q} = \\
= \left\{ \begin{array}{l}
0\;\;q < n \\
1\;\;q = n \\
\end{array} \right. \\
\end{array}
$$