I want to show that
$$\int_{-\infty}^{\infty}{\left(x^2-x+\pi\over x^4-x^2+1\right)^2}dx=\pi+\pi^2+\pi^3$$
Expand $(x^4-x+\pi)^2=x^4-2x^3+2x^2-2x\pi+\pi{x^2}+\pi^2$
Let see (substitution of $y=x^2$)
$$\int_{-\infty}^{\infty}{x\over (x^4-x^2+1)^2}dx={1\over 2}\int_{-\infty}^{\infty}{1\over (y^2-y+1)^2}dy$$
Substituion of $y=x^3$
$$\int_{-\infty}^{\infty}{x^3\over (x^4-x^2+1)^2}dx={1\over 4}\int_{-\infty}^{\infty}{1\over (y^2-y+1)^2}dy$$
As for $\int_{-\infty}^{\infty}{x^2\over (x^4-x^2+1)^2}dx$ and $\int_{-\infty}^{\infty}{x^4\over (x^4-x^2+1)^2}dx$ are difficult to find a suitable substitution. This is the point where I am shrugged with to find a suitable substitution To lead me to a particular standard integral. Need some help, thank.
standard integral of the form
$$\int{1\over (ax^2+bx+c)^2}dx={2ax+b\over (4ac-b^2)(ax^2+bx+c)}+{2a\over 4ac-b^2}\int{1\over ax^2+bx+c}dx$$ And
$$\int{1\over ax^2+bx+c}dx={2\over \sqrt{4ac-b^2}}\tan^{-1}{2ax+b\over \sqrt{4ac-b^2}}$$