if $m|a$ and $m|b$ then $(a/m,b/m)=(a,b)/m$
proof
show $(a/m,b/m)\leq (a,b)/m$ and $(a/m,b/m) \geq (a,b)/m$
Let $(a,b)=d$, so by bezout's identity there exists intergers x,y such that ax+by=d
$$ax+by=d$$ $$ax/m+by/m=d/m$$
This implies that $gcd(a/m,b/m)|d/m$, so $gcd(a/m,b/m)\leq d/m$
I just could show that direction. Need help on the other one.