"Let $F$ be a field and suppose that $p(x),q(x) \in F[x]$ are the two polynomials $p(x) = x^5 - x^4 + x^3 - x^2 + x - 1$ and $q(x) = x^2-1$
(i) Prove that $q(x)$ does not divide $p(x)$ when $F = \mathbb{R}$
(ii) Prove that $q(x)$ does divide $p(x)$ when $F = \mathbb{Z}_3$"
I'm not sure how to approach this - is it enough for (i) to use long division to show that $p(x) = q(x) + 3x+3$?
I'm not sure what $\mathbb{Z}_3$ actually is - I know that $\mathbb{Z}$ is the set of integers, but I'm not sure what the 3 means.