What is the limit $$\lim\limits_{x\rightarrow\infty} e^{\,x-1} ?$$
Thanks.
What is the limit $$\lim\limits_{x\rightarrow\infty} e^{\,x-1} ?$$
Thanks.
As $x$ tends to infinity, $x-1$ goes toward $+\infty$, therefore: $$\lim_{x\to+\infty}e^{x-1}=\lim_{x\to+\infty}e^x.$$
$$\lim_{x\rightarrow \infty}e^{x-1}=\lim_{x\rightarrow \infty}\frac{e^{x}}{e}=\frac{1}{e}\lim_{x\rightarrow \infty}e^{x}=+\infty$$
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that
$$e^x\ge 1+x \tag 2$$
for all $x$. Therefore, we have
$$e^{x-1}\ge x$$
and hence
$$\lim_{x\to \infty}e^{x-1}\ge \lim_{x\to \infty}x=\infty$$