$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{x \equiv y^{1/6n}}$:
\begin{align}
\color{#f00}{I_{n}} & =
\int_{-\infty}^{\infty}{\dd x \over x^{4n} + x^{2n} + 1} =
2\int_{0}^{\infty}{\dd x \over x^{4n} + x^{2n} + 1} =
{1 \over 3n}
\int_{0}^{\infty}{y^{1/\pars{6n} - 1} \over y^{2/3} + y^{1/3} + 1}\,\dd y
\\[3mm] & =
{1 \over 3n}
\int_{0}^{\infty}{y^{1/\pars{6n} - 2/3} - y^{1/\pars{6n} - 1}\over y + 1}\,\dd y =
{1 \over 3n}\mathrm{f}\pars{{1 \over 6n} - {2 \over 3},{1 \over 6n} - 1}
\\[3mm] &\mbox{where}\quad\mathrm{f}\pars{a,b} \equiv
\lim_{\Lambda \to\ \infty}\bracks{%
\int_{0}^{\Lambda}{y^{a} - 1 \over y - 1}\,\dd y -
\int_{0}^{\Lambda}{y^{b} - 1 \over y - 1}\,\dd y}
\end{align}
Note that
\begin{align}
\int_{0}^{\Lambda}{y^{\mu} - 1 \over y - 1}\,\dd y & =
\int_{0}^{1}{y^{\mu} - 1 \over y - 1}\,\dd y +
\int_{1}^{\Lambda}{y^{\mu} - 1 \over y - 1}\,\dd y
\\[3mm] & =
\int_{0}^{1}{1 - y^{\mu} \over 1 - y}\,\dd y +
\int_{1}^{1/\Lambda}{y^{-\mu} - 1 \over 1/y - 1}\,\pars{-1 \over y^{2}}\,\dd y
\\[3mm] & =
\int_{0}^{1}{1 - y^{\mu} \over 1 - y}\,\dd y +
\int_{1/\Lambda}^{1}{y^{-\mu - 1} - y^{-1} \over 1 - y}\,\dd y
\end{align}
Then,
\begin{align}
\mathrm{f}\pars{a,b} & =
\int_{0}^{1}{1 - y^{a} \over 1 - y}\,\dd y -
\int_{0}^{1}{1 - y^{b} \over 1 - y}\,\dd y +
\int_{0}^{1}{1 - y^{-b - 1} \over 1 - y}\,\dd y -
\int_{0}^{1}{1 - y^{-a - 1} \over 1 - y}\,\dd y
\\[3mm] & =
\Psi\pars{a + 1} - \Psi\pars{b + 1} + \Psi\pars{-b} - \Psi\pars{-a}
\\[3mm] & = -\pi\cot\pars{\pi a} + \pi\cot\pars{\pi b}
\end{align}
$$
\color{#f00}{I_{n}} =
\color{#f00}{{\pi \over 3n}\braces{\cot\pars{\pi \over 6n} -
\cot\pars{{\pi \over 6n} - {2\pi \over 3}}}}
\quad\imp\quad\color{#f00}{\lim_{n \to \infty}I_{n}} = \color{#f00}{2}
$$
The 'limiting situation' is clearly seen by rewriting $\color{#f00}{I_{n}}$ in the following way:
$$
I_{n} = \color{#f00}{\large 2}\
\underbrace{{\pi/\pars{6n} \over \sin\pars{\pi/\bracks{6n}}}}_{\ds{\to 1}}\
\underbrace{\cos\pars{\pi \over 6n}}_{\ds{\to\ 1}}\ -\
\underbrace{{\pi \over 3n}\,\cot\pars{{\pi \over 6n} - {2\pi \over 3}}}
_{\ds{\to 0}}
$$