0

I read that a Matrix $A$ has the eigenvalue $0$ if and only if $\ker(A) \neq \{0\}$.

Why so?

Edit Okay actually I figured it out myself. If $0$ is an eigenvalue of a matrix $A$ then $\det(A)=0$ and then $A$ is not invertible, therefore the rows are not linearly independent: $\ker(A) \neq0$.

Tesla
  • 1,380

2 Answers2

0

$A$ has eigenvalue $0$ $\iff$ $\exists v \neq0$ such that $Av=0v=0$ $\Rightarrow 0\neq v\in \ker (A) \Rightarrow \ker (A) \neq\{0\} $ .

On the other hand : $\ker (A) \neq\{0\} \Rightarrow \exists v\neq0$ such that $v \in \ker (A)\Rightarrow \exists v\neq0$ such that $Av=0=0v$. So $0$ is eigenvalue of $A$.

Bérénice
  • 9,367
-1

Because there exists non-trivial vector $x$ such that $Ax = 0$, so then $Ax = 0 *x$ and $0$ is an eigenvalue.