$f(x) = n^x - x^n = e^{x \ln n} - e^{n \ln x}$
Clearly $f(n) =0 $
We are given that $x \ge n\ge 3$ with $n\in \mathbb Z$ and note that $x >\ln x \ge \ln n > 1$
Consider $ g_1(x) = x \ln n$ and $g_2(x) = n \ln x$
$g_1'(x) = \ln n $ and $g_2'(x) = \frac nx $
For $x>n, g_1'(x)>1$ and $g_2'(x)<1 \implies g_1(x)-g_2(x)$ increasing and $\therefore f(x)$ increasing.
\begin{align}f(x) &=x^{x+1}-(x+1)^x \\[3ex]
&= x^x\left(x - \left(\frac{x+1}{x}\right)^x\right) \\[3ex]
&= x^x\left(x - \left(1+\frac{1}{x}\right)^x\right) \\[3ex]
\end{align}
Clearly $x^x$ is increasing and also since $2.37 < \left(1+\frac{1}{x}\right)^x <e$ for $x \ge 3$, the second term is increasing also, giving the result.