Prove, without using l'Hôpital's Rule, that $\lim\limits_{x \to 0}{\dfrac{1}{x} - \dfrac{1}{\sin{(x)}}} = 0$.
I proved that there exists a $s >0$ such that $\forall x \in (-s,s)$ $\Rightarrow$ $\dfrac{1}{x} - \dfrac{1}{\sin{(x)}} > 0$ if $x<0$ and $\dfrac{1}{x} - \dfrac{1}{\sin{(x)}} < 0$ if $x>0$. Therefore, this limit exist and it is equal zero, or doesn’t exist. But it is only thing I could do.