In a $\triangle ABC$, if $\tan A$, $\tan B$, $\tan C$ are in harmonic progression, then what is the minimum value of $\cot(B/2)$?
$\bf{My\; Try::}$ Here $A+B+C=\pi\;,$ Then $\tan A+\tan B+\tan C=\tan A\cdot \tan B\cdot \tan C$
and given $\tan A,\tan B\;,\tan C$ are in harmonic progression,
So we get $$\frac{2}{\tan B} = \frac{1}{\tan A}+\frac{1}{\tan C} = \frac{\tan A+\tan C}{\tan A\tan C}=\frac{\tan A\tan B\tan C-\tan B}{\tan A\tan C}$$
So $$\tan B -\frac{\tan B}{\tan A\tan C} = \frac{2}{\tan B}\Rightarrow \tan^2 B = \frac{2\tan A\tan C}{\tan A\tan C-1}$$
Now how can i solve after that, Help required, Thanks