$\newcommand{\s}{\operatorname{sum}}$Problem: Let $E=[1]_{n\times n}$ and let $\s(X)$ be the sum of all elements of matrix $X$.
If $A$,$B$ $\in$ $M_{n \times n}$ $(\mathbb C)$ are regular matrices so that $A+B=\lambda E$, $\lambda \in \mathbb C$, prove the following: $$[1-\lambda \s(A^{-1})][1-\lambda \s(B^{-1})]=1$$
We did not say much about sums of all elements. I did some research and found this topic, but I do not know how to use said information here.
This is what I've done so far:
$$[1-\lambda \s(A^{-1})][1-\lambda \s(B^{-1})]=1$$
$$1-\lambda \s(A^{-1})-\lambda \s(B^{-1})+\lambda^2\s(A^{-1}\s(B^{-1})=1$$
$$-\lambda \s(A^{-1})-\lambda \s(B^{-1})+\lambda^2\s(A^{-1})\s(B^{-1})=0$$
$$\lambda [-\s(A^{-1})-\s(B^{-1})+\lambda \s(A^{-1})\s(B^{-1})]=0$$
If $\lambda=0$ this is true, but if $\lambda \not= 0$ I have:
$$-\s(A^{-1})-\s(B^{-1})+\lambda \s(A^{-1})\s(B^{-1})=0$$
I am not sure how to make connection between $A$, $B$ and their inverse matrices. I know that regular matrices $A$ and $B$ mean their inverse exists. Also $\det(A+B)=0$ which means $(A+B)^{-1}$ does not exist.
Any help is greatly appreciated.